Three Lakes Internship 2016

Rachael Horn Western Michigan University, Kyle Russell Central Lake High School, John Sabins Kalkaska High School, Hailey Casillas Bellaire High School, Donn Stone TC Central High

Large Woody Debris Project

History: How did the Grass River end up like this?

- Dredging and Sediments
- Boat Traffic

Construction and Assembling

- Purpose: What was this project intended for?
- Transects: Measurements of the river depth
- Structures: Dead Trees such as Tamaracks and Fir trees fastened together
- Anchoring: Duck Bills and Posts

Eurasian Water Milfoil

History of Eurasian Water Milfoil

Where it came from

- What is it?
- Where did it come from? Asia & Europe
- Subspecies: Native, Hybrid, Eurasian

Conservation Efforts

- Benthic Barriers, Chemical Treatment, Diver Assisted Suction
- Were they successful?

What Can You Do to Help?

- Clean Your Boat or Let it sit for five days
- Know what you're looking at

Left: Torch Lake Milfoil Samples

Right: Alden Harbor Eurasian Milfoil

Left: The plant sample on the left is Native Water Milfoil, note how much more lush the native is than its invasive counterpart.

The Benthic Barriers

Placement of a Benthic Barrier

Quanta Hydrolab

What is the Hydrolab for?

- The Hydrolab is used for monitoring water quality
- Measurements we took consisted of...
- Temperature, pH, Dissolved Oxygen (DO), Standard Plate Count(SpC), and depth.

Locations of Testing

- Torch Lake
- Clam Lake
- The Grass River
- Lake Bellaire

Should we continue using this equipment?

• Yes, the Hydrolab has proven to be a very useful and productive tool, within reason, using this every two to three years would be more productive.

Site Names	DO	рН	SpC	Depth	Тетр
Mouth of Clam River at Torch Lake	8.67	8.19	0.366	1.2 Meters	23.09 C°
South of Dewitt	8.48	8.13	0.399	1 Meter	24.53 C°
North of Dewitt	7.29	7.89	0.403	5 Meters	21.89 C°
Clam Lake at Grass River	8.74	8.12	0.408	1.2 Meters	21.43 C°
Finch Creek at Grass River	8.64	8.12	0.413	0.8 Meters	21.50 C°
Cold Creek at Grass River	8.93	8.07	0.400	0.4 Meters	20.40 C°
Shanty Creek at Grass River	8.88	8.20	0.417	0.3 Meters	21.87 C°
Grass River at Lake Bellaire	7.95	8.17	0.395	0.4 Meters	26.15 C°
Muary Creek at Lake Bellaire	8.30	8.17	0.672	0.1 Meters	20.13 C°
Muary Creek at Culvert	7.96	8.14	0.614	0.1 Meters	20.12 C°

Site Name		Yea	r Te	Temperature (C°)		Depth Metres		Dissolved Oxygen (DO)			рН	Standard Plate Count (spc)
Lake Bellaire @ Grass River Inlet		2014		20.07C°		0.4		9.03		3	8.53	0.343
Lake Bellaire @ Grass I Inlet	River	201	6 2	26.15	C°		0.4		7.9	5	8.17	0.395
Site Names			DO	pН	SpC		Depth			Temp		
Mouth of Clam River at Torch Lake	Site Name Coded L001AE	Common Torch lake o	ffshore of Cla	Time		emp	pH	SpC mS/cr	DO % sat	bDO mg/L	Depth m	
South of Dewitt	R004AA	River Clam River (@ Butch's	10.1		1-110	0.24	6.351	-	0.34	1.0	
	L002AH	Clam Lake @	CLMP 0501	101	0 2	0.37	7.75	0.355	-		6.4	
North of Dewitt	R005AB	Grass River	outlet @ Clar	n 10:5	16 1	1.41	8.40	0,351		8.92	1-1	
	C007AC	Finch Creek	@ Grass Riv	er (0 *	55 18	(.HJ	8.40	0.356		5 50	0.4	
Clam Lake at Grass River	C006AD C005AB	Cold Creek (Shanty Cree	@ Grass Rive k @ Grass Ri	iver	21 12	0-03	8.19	0.375		9.45	0.6	
	L003AC	Lake Bellaire	e @ Grass Riv	ver his	52 3	50.0	8.53	0.343		9.03	0.4	
Finch Creek at Grass River	COZONO	Moury Creek	c@ Lake Bell	aire an	21 2	94	0.29			10.61	01	
	C023AA	Maury Creek	c @ Fisherma	in's 13:1	4 19	5.68	8.29	0.580		12-8	.1	
Cold Creek at Grass River	C023AC	Maury Creek	@ old RR gr	rade 13	19 15	5.57	\$.46	C-586		9.42	- 1	
	C023AD	Maury Creek	< @ M-88 inflo	w (3	:30 (1	-20.0	8.49	0.574		A.8.50	- (
Shanty Creek at Grass River	C023AE	Maury Creek	c @ Pond out	flow (3:	41 1	7.19	5.11			12.93	-1	
	C023AF	Maury Creek	c @ Pond infle	ow 15:	45 1	6.22	8.45	0.010		9.18	01	
Grass River at Lake Bellaire			7.95	8.17	8.17 0.395		0.4 Meters		26.15 C°			
Muary Creek at Lake Benane		0 20	0.47	.47 0.072		U. I WIETE		rs 20.13 C°				
Muary Creek at Culvert		7.96	8.14	0.614	1	0.1 Me	ters		20.12 C°			

E. coli

What is E. Coli?

- E. Coli is a bacteria that lives in the environment, humans, and animals.
- This bacteria, while some strains are harmless, some are harmful.
- Why we test for E. Coli?
- E. Coli can be harmful
- Can be a telltale sign of a septic failure or sewage leak.
- Is testing important?
 - Public Protection
 - Provides Information on water quality

7/7/2016 ROOHAA 10 X 11 LOOZAC 0 % 7 x 11 C009 AA HZ G 13 22 11 ROOJ AA 3 5a x 3 11 ROOIAB X COZZ AA 1414 X 11 17 3 x ROOSAA 0 ŋ X CODSAA 13 1) 6 COOGRA 12 X 1) 0 23 X COOT AA 11 D

Fish Shocking

Why we do it?

 We fish shock to gain a better understanding of what aquatic life exists in the stream.

Species of fish found:

Stream Conditions:

- Brook Trout
- Rainbow Trout
- Mottled Sculpin
- Brown Trout

- Cobble
- Pools
- Submerged Wood
- Root Wads

Macroinvertebrate

Needed materials for collecting:

- D- Net
- Bucket of water
- Ourselves

Needed materials for identifying:

- Dichotomous Key
- Ice cube trays
- Tweezers
- Little strainers

Stream Macroinvertebrate Datasheet Group 1: Sensitive Stream Name: STREAM QUALITY SCORE Location: Bridge Caddisfly larvae (Trichoptera) 111 EXCEPT Net-spinning caddis Group 1: Date: 8/4/16 Hellgrammites (Megaloptera) 3 # of R's * 5.0 = 15 Mayfly nymphs (Ephemeroptera) Major Watershed: ERCOL # of C's * 5.3 =Gilled (right-handed) snails (Gastropoda) Group 1 Total = 15 Stonefly nymphs (Plecoptera) Latitude: 44, 95151 Water penny (Coleoptera) Group 2: Water snipe fly (Diptera) 4 # of R's * 3.0 = 12 1 # of C's * 3.2 = 3.2Monitoring Team: Group 2: Somewhat-Sensitive Group 2 Total = 15.2 Alderfly larvae (Megaloptera) Group 3: Beetle adults (Coleoptera) Collector: Racheal 2 # of R's * 1.1 = 2.2(Coleoptera) Beetle larvae # of C's * 1.0 = Other Team Members: (Diptera) Black fly larvae Group 3 Total = 2,2 Clams (Pelecypoda) Crane fly larvae (Diptera) Total Stream Quality Score = 32,4 Cravfish (Decapoda) (Sum of totals for groups 1-3; round to Stream Conditions: Damselfly nymphs (Odonata) nearest whole number) Dragonfly nymphs (Odonata) Is the substrate covered with excessive silt? X No Net-spinning caddisfly larvae Check one: (Hydropsychidae: Trichoptera) (>48) Excellent IDD+ Scuds (Amphipoda) (34 - 48)Good Sowbugs (Isopoda) Fair (19-33)Poor (<19) Group 3: Tolerant Aquatic worms (Oligochaeta) X Riffles Stream Margins Leeches (Hirudinea) Leaf Packs X Cobbles Midge larvae (Diptera) Aquatic Plants Pools K Runs Pouch snails (Gastropoda) (Hemiptera) (water striders) 10 True bugs Other true flies (Diptera) Collection Finish Time: 153 (AM/PM) Identifications made by: Interns

Maury Creek (Circle one: Upstream or Downstream of road?) Collection Start Time: 7:30 (AM/PM) HUC Code (if known):_ Longitude: 85, 20174 Name of Person Completing Datasheet: 211 Average Water Depth: Yes (describe:____ Substrate Embeddedness in Riffles: X 0-25% 25-50% > 50% Unsure Did you observe any fish or wildlife? () Yes () No If so, please describe:____ Macroinvertebrate Collection: Check the habitats that were sampled. Include as many as possible. Submerged Wood Other (describe: Undercut banks/Overhanging Vegetation Did you see, but not collect, any **live crayfish**? (___Yes X__No), or **large clams**? (___Yes Y_No) *remember to include them in the assessment on the other side!*

The Fair!

Antrim County Fair

- Public Outreach
- Plane Rides

Recommendations

- Massive Intern Dinner
- Use of the Quanta Hydrolab should consist of Bi or Tri annual usage
- Benthic Barriers, good start, but process needs to be refined.

A huge thanks to all outside aid and assistance!

Jim Fischer

Heather Hettinger

Becky Norris

Ken Reed

Fred Sittel

Steve Laurenz

Norton Bretz

Thanks to any others not listed!